Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract It is well known that classical optical cavities can exhibit localized phenomena associated with scattering resonances, leading to numerical instabilities in approximating the solution. This result can be established via the ‘quasimodes to resonances’ argument from the black box scattering framework. Those localized phenomena concentrate at the inner boundary of the cavity and are called whispering gallery modes. In this paper we investigate scattering resonances for unbounded transmission problems with sign-changing coefficient (corresponding to optical cavities with negative optical properties, e.g. made of metamaterials). Due to the change of sign of optical properties, previous results cannot be applied directly, and interface phenomena at the metamaterial-dielectric interface (such as the so-called surface plasmons) emerge. We establish the existence of scattering resonances for arbitrary two-dimensional smooth metamaterial cavities. The proof relies on an asymptotic characterization of the resonances, and shows that problems with sign-changing coefficient naturally fit the black box scattering framework. Our asymptotic analysis reveals that, depending on the metamaterial’s properties, scattering resonances situated close to the real axis are associated with surface plasmons. Examples for several metamaterial cavities are provided.more » « less
-
When using boundary integral equation methods, we represent solutions of a linear partial differential equation as layer potentials. It is well-known that the approximation of layer potentials using quadrature rules suffer from poor resolution when evaluated closed to (but not on) the boundary. To address this challenge, we provide modified representations of the problem’s solution. Similar to Gauss’s law used to modify Laplace’s double-layer potential, we use modified representations of Laplace’s single-layer potential and Helmholtz layer potentials that avoid the close evaluation problem. Some techniques have been developed in the context of the representation formula or using interpolation techniques. We provide alternative modified representations of the layer potentials directly (or when only one density is at stake). Several numerical examples illustrate the efficiency of the technique in two and three dimensions.more » « less
An official website of the United States government
